Stochastic Control Theory Exercise 1

Due: December 16, 2019

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a complete probability space endowed with an increasing filtration $(\mathcal{F}_t)_{t\geq 0}$.

Part 1: Definition and Properties of Stochastic Integrals

Let $(W(t))_{t\geq 0}$ be an \mathcal{F}_t -adapted real-valued Wiener process. We denote by $L^2(T)$ the set of real-valued stochastic processes $(X(t))_{t\in[0,T]}$ such that

- the mapping $(t, \omega) \to X(t, \omega)$ is $\mathcal{B} \times \mathcal{F}$ -measurable, where \mathcal{B} denotes the Borel σ -algebra on [0, T];
- $(X(t))_{t\in[0,T]}$ is \mathcal{F}_t -adapted;
- $\mathbb{E} \int_0^T |X(t)|^2 dt < \infty$.

Then the Itô stochastic integral

$$\int_{0}^{T} X(t) dW(t)$$

is well defined for all $X \in L^2(T)$.

Exercises:

1. Show that for all $a, b \in \mathbb{R}$ and all $X, Y \in L^2(T)$

$$\int_{0}^{T} a X(t) + b Y(t) dW(t) = a \int_{0}^{T} X(t) dW(t) + b \int_{0}^{T} Y(t) dW(t).$$

2. Verify that for all $X \in L^2(T)$

$$\mathbb{E}\left[\int_{0}^{T} X(t) \, dW(t)\right] = 0.$$

3. Prove that the Itô isometry

$$\mathbb{E}\left[\left(\int_{0}^{T} X(t) dW(t)\right)^{2}\right] = \mathbb{E}\left[\int_{0}^{T} X^{2}(t) dt\right]$$

holds for all $X \in L^2(T)$.

4. For all $r, t \in [0, T]$ with $r \leq t$ and all $X \in L^2(T)$, we define

$$\int_{0}^{t} X(s) \, dW(s) = \int_{0}^{T} \mathbb{1}_{[r,t]}(s) \, X(s) \, dW(s),$$

where 1 denotes the indicator function. Derive that

$$\int_{0}^{t} X(s) dW(s) = \int_{0}^{r} X(s) dW(s) + \int_{r}^{t} X(s) dW(s).$$

5. Show that the process $(\int_0^t X(s) dW(s))_{t \in [0,T]}$ is a martingale with respect to $(\mathcal{F}_t)_{t \geq 0}$.

Hint: Verify these properties for elementary processes in $L^2(T)$ and use a suitable density result.

Part 2: The Itô Formula and Stochastic Differential Equations

We first introduce the Itô formula.

Theorem. Let the real-valued stochastic process $(X(t))_{t\in[0,T]}$ be of the form

$$X(t) = x_0 + \int_{0}^{t} A(s) ds + \int_{0}^{t} B(s) dW(s),$$

where x_0 is a \mathcal{F}_0 -measurable real-valued random variable and the stochastic processes $(A(t))_{t \in [0,T]}$ and $(B(t))_{t \in [0,T]}$ are \mathcal{F}_t -adapted such that

$$\mathbb{E}\left[\int\limits_{0}^{T}\left|A(t)\right|dt\right]+\mathbb{E}\left[\int\limits_{0}^{T}\left|B(t)\right|^{2}dt\right]<\infty.$$

Assume that $f \in C^{1,2}([0,T) \times \mathbb{R})$, i.e. the function f is once continuous differentiable with with respect to the first argument and twice continuous differentiable with respect to the second argument. Then we have

$$f(t, X(t)) = f(0, x_0) + \int_0^t \left[\frac{\partial}{\partial t} f(s, X(s)) + A(s) \frac{\partial}{\partial x} f(s, X(s)) + \frac{1}{2} B^2(s) \frac{\partial^2}{\partial x^2} f(s, X(s)) \right] ds$$
$$+ \int_0^t B(s) \frac{\partial}{\partial x} f(s, X(s)) dW(s).$$

For a real-valued stochastic process $(X(t))_{t\in[0,T]}$, we introduce the stochastic differential equation (SDE)

$$\begin{cases} dX(t) = b(t, X(t)) dt + \sigma(t, X(t)) dW(t) \\ X(0) = x_0, \end{cases}$$

where x_0 is a \mathcal{F}_0 -measurable real-valued random variable and $(W(t))_{t\geq 0}$ is a \mathcal{F}_t -adapted real-valued Wiener process. The mappings $b, \sigma \colon [0, T] \times \mathbb{R} \to \mathbb{R}$ satisfy some suitable properties (growth condition and Lipschitz condition) such that the SDE has a unique solution given by

$$X(t) = \int_{0}^{t} b(s, X(s)) ds + \int_{0}^{t} \sigma(s, X(s)) dW(s).$$

Exercises:

1. Let $\mu, \sigma \in L^{\infty}([0,T])$. Verify that the solution of the SDE

$$\begin{cases} dX(t) = \mu(t)X(t) dt + \sigma(t)X(t) dW(t) \\ X(0) = x_0, \end{cases}$$

is given by

$$X(t) = x_0 \exp \left\{ \int_0^t \mu(s) - \frac{1}{2} \sigma^2(s) \, ds + \int_0^t \sigma(s) \, dW(s) \right\}.$$

2. Let the processes $(X_1(t))_{t \in [0,T]}$ and $(X_2(t))_{t \in [0,T]}$ denote the coordinates of a Wiener process $(W(t))_{t \geq 0}$ on the unit circle defined by

$$X_1(t) = \cos(W(t)), \quad X_2(t) = \sin(W(t)).$$

Find SDEs for $(X_1(t))_{t\in[0,T]}$ and $(X_2(t))_{t\in[0,T]}$.

3. Let $(X(t))_{t\in[0,T]}$ be the mean-reverting Ornstein-Uhlenbeck process given by

$$\begin{cases} dX(t) = \left[m - X(t)\right] dt + \sigma dW(t) \\ X(0) = x_0, \end{cases}$$

where $m, \sigma, x_0 \in \mathbb{R}$ are constants. Find the solution of this SDE and calculate the mean $\mathbb{E}[X(t)]$ and the variance Var[X(t)] for all $t \in [0, T]$.

4. Find a solution $(X(t))_{t\in[0,T]}$ of the nonlinear SDE

$$\begin{cases} dX(t) = X^{\gamma}(t) dt + \sigma X(t) dW(t) \\ X(0) = x_0, \end{cases}$$

where $\gamma, \sigma \in \mathbb{R}$ are constants.

Hint: It is allowed to use the product rule for Itô process as well as solutions for deterministic ODEs.

Part 3: Numerics for Stochastic Control Problems

Let the real-valued stochastic process $(X(t))_{t\in[0,T]}$ be the solution of the controlled SDE

$$\begin{cases} dX(t) = b(t, X(t), u(t)) dt + \sigma(t, X(t), u(t)) dW(t) \\ X(0) = x_0, \end{cases}$$

where x_0 is a \mathcal{F}_0 -measurable real-valued random variable and $(W(t))_{t\geq 0}$ is a \mathcal{F}_t -adapted real-valued Wiener process. The real-valued stochastic process $(u(t))_{t\in[0,T]}$ denotes the control satisfying $\mathbb{E}\int_0^T |u(t)|^2 dt < \infty$. We introduce a partition of the time interval [0,T] such that

$$0 = t_0 < t_1 < \dots < t_N = T$$

and $t_{k+1} - t_k = \Delta t > 0$ for all k = 0, 1, ..., N - 1. Then the Euler-Maruyama method provides a numerical solution for SDEs. One introduces the iteration scheme

$$\hat{X}_{k+1} = \hat{X}_k + b(t_k, \hat{X}_k, u(t_k))\Delta t + \sigma(t_k, \hat{X}_k, u(t_k))\Delta W_k$$

for each k = 0, 1, ..., N - 1 with $\hat{X}_0 = x_0$ and $\Delta W_k = W(t_{k+1}) - W(t_k) \sim \mathcal{N}(0, \Delta t)$.

PC - Exercises:

- 1. Simulate the Wiener process $(W(t))_{t\geq 0}$ on the time interval [0,T] with T=1. Plot t against W(t).
- 2. Implement the Euler-Maruyama method on the time interval [0,T] for the SDE

$$\begin{cases} dX(t) = \mu X(t) dt + \sigma X(t) dW(t) \\ X(0) = x_0, \end{cases}$$

where $\mu, \sigma \in \mathbb{R}$. Use the values T = 1, $x_0 = 1$, $\mu = 2$, and $\sigma = 1$. For the step size use $\Delta t = 2^{-2}$, 2^{-4} , 2^{-6} , and 2^{-8} . From Exercise 1 in Part 2, we know that the explicit solution of the SDE is given by

$$X(t) = x_0 \exp\left\{\mu t - \frac{1}{2}\sigma^2 t + \sigma W(t)\right\}.$$

Plot the explicit solution and the numerical solution using the same trajectory of the Wiener process.

3. In Section 1.1 in the lecture, we considered the wealth process $(X(t))_{t \in [0,T]}$ satisfying

$$dX(t) = ([r + (\mu - r)\pi(t)]X(t) - c(t)) dt + \sigma \pi(t)X(t) dW(t).$$

Implement the Euler–Maruyama method on the time interval [0,T]. Use the values $T=1, x_0=20, r=1, \mu=2,$ and $\sigma=1$. For the trading strategy $\pi(t)$ use the constants values 0,0.1,0.5,0.7, and 1. For the consumption plan c(t) use the constants values 0,0.5,1,1.5, and 2. Calculate the values of the cost functional

$$J(X, \pi, c) = \mathbb{E}\left[\int_{0}^{T} e^{-\delta t} \frac{1}{\gamma} c^{\gamma}(t) dt + e^{-\delta T} \frac{1}{\gamma} X^{\gamma}(T)\right]$$

with $\delta = \gamma = 0.5$.

Literature:

- P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Springer, 1992
- P. E. Protter, Stochastic Integration and Differential Equations, Springer, 2005
- K. Sobczyk, Stochastic Differential Equations, With Applications to Physics and Engineering, Springer, 1991
- B. Øksendal, Stochastic Differential Equations, An Introduction with Applications, Springer, 2013